若存在实数a∈R,使得不等式 x|x-a|+b<

难度:一般 题型:填空题 来源:不详

题目

若存在实数a∈R,使得不等式 x|x-a|+b<0对于任意的x∈[0,1]都成立,则实数b的取值范围是______.

答案

问题等价于:当0≤x≤1时,x|x-a|+b<0恒成立,当x=0时a取任意实数不等式恒成立
也即x+

b
x
<a<x-
b
x
恒成立
令g(x)=x+
b
x
在0<x≤1上单调递增,∴a>gmax(x)=g(1)=1+b(10分)
令h(x)=x-
b
x
,则h(x)在(0,

解析