题目
| 3x |
| 9x+1 |
| 1 |
| 2 |
(1)判断并证明y=f(x)在(-∞,0)上的单调性;
(2)求y=f(x)的值域;
(3)求不等式f(x)>
| 1 |
| 3 |
答案
∵f(x1)-f(x2)=
| 3x1 |
| 9x1+1 |
| 3x2 |
| 9x2+1 |
| 3x1+2x2+3x1-32x1+x2-3x2 |
| (9x1+1)(9x2+1) |
| (3x1-3x2)(1-3x1+x2) |
| (9x1+1)(9x2+1) |
∴f(x1)<f(x2),即y=f(x)在(-∞,0)上是增函数.
(2)∵0<
| 3x |
| 9x+1 |
| 1 | ||
3x+
|
| 1 |
| 2 |
∴当x≤0时,f(x)=
| 3x |
| 9x+1 |
| 1 |
| 2 |
| 1 |
| 2 |
∵当x>0时,f(x)=
| 1 |
| 2 |
| 3x |
| 9x+1 |
| 1 |
| 2 |
综上得 y=f(x)的值域为 (-
| 1 |
| 2 |
| 1 |
| 2 |
(3)∵f(x)∈(-
| 1 |
| 2 |
| 1 |
| 2 |
又∵f(x)>
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3x |
| 9x+1 |
∵f(1)=
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
令
| 1 |
| 2 |
| 3x |
| 9x+1 |
| 1 |
| 3 |
即
| 3x |
| 9x+1 |
| 1 |
| 6 |
解析 |