题目
1 |
2 |
1 |
2 |
答案
若函数f(x)=loga(ax2-x+
1 |
2 |
1 |
2 |
即0<ax2-x+
1 |
2 |
1 |
2 |
∴
1 |
x |
1 |
2x2 |
1 |
x |
1 |
2x2 |
而
1 |
x |
1 |
2x2 |
1 |
2 |
1 |
2 |
1 |
x |
1 |
2x2 |
1 |
2 |
5 |
8 |
∴此时
1 |
2 |
5 |
8 |
当a>1时,函数f(x)=loga(ax2-x+
1 |
2 |
1 |
2 |
则ax2-x+
1 |
2 |
1 |
2 |
即a>
1 |
x |
1 |
2x2 |
1 |
2 |
而
1 |
x |
1 |
2x2 |
1 |
2 |
∴此时a>4
故答案为:(
1 |
2 |
5 |
8 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
x |
1 |
2x2 |
1 |
x |
1 |
2x2 |
1 |
x |
1 |
2x2 |
1 |
2 |
1 |
2 |
1 |
x |
1 |
2x2 |
1 |
2 |
5 |
8 |
1 |
2 |
5 |
8 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
x |
1 |
2x2 |
1 |
2 |
1 |
x |
1 |
2x2 |
1 |
2 |
1 |
2 |
5 |
8 |