题目
| 1 |
| 2 |
| 1 |
| 2 |
答案
若函数f(x)=loga(ax2-x+
| 1 |
| 2 |
| 1 |
| 2 |
即0<ax2-x+
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| x |
| 1 |
| 2x2 |
而
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
| 5 |
| 8 |
∴此时
| 1 |
| 2 |
| 5 |
| 8 |
当a>1时,函数f(x)=loga(ax2-x+
| 1 |
| 2 |
| 1 |
| 2 |
则ax2-x+
| 1 |
| 2 |
| 1 |
| 2 |
即a>
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
而
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
∴此时a>4
故答案为:(
| 1 |
| 2 |
| 5 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
| 5 |
| 8 |
| 1 |
| 2 |
| 5 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2x2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 8 |