已知函数f(x)=(x+1)(x+a)x2

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=

(x+1)(x+a)
x2
为偶函数.
(Ⅰ)求实数a的值;
(Ⅱ)记集合E={y|y=f(x),x∈{-1,1,2}},λ=lg22+lg2lg5+lg5-
1
4
,判断λ与E的关系;
(Ⅲ)当x∈[
1
m
1
n
]
(m>0,n>0)时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.

答案

(I)∵函数f(x)=

(x+1)(x+a)
x2
为偶函数.
∴f(-x)=f(x)
(x+1)(x+a)
x2
=
(-x+1)(-x+a)
x2

∴2(a+1)x=0,
∵x为非零实数,
∴a+1=0,即a=-1
(II)由(I)得f(x)=
x2-1
x2

∴E={y|y=f(x),x∈{-1,1,2}}={0,
3
4
}
λ=lg22+lg2lg5+lg5-
1
4
=lg2•(lg2+lg5)+lg5-
1
4
=lg2+lg5-
1
4
=1-
1
4
=
3
4

∴λ∈E
(III)∵f′(x)=
2
x3
>0恒成立
f(x)=
x2-1
x2
[
1
m
1
n
]
上为增函数
又∵函数f(x)的值域为[2-3m,2-3n],

解析