题目
| (x+1)(x+a) |
| x2 |
(Ⅰ)求实数a的值;
(Ⅱ)记集合E={y|y=f(x),x∈{-1,1,2}},λ=lg22+lg2lg5+lg5-
| 1 |
| 4 |
(Ⅲ)当x∈[
| 1 |
| m |
| 1 |
| n |
答案
| (x+1)(x+a) |
| x2 |
∴f(-x)=f(x)
即
| (x+1)(x+a) |
| x2 |
| (-x+1)(-x+a) |
| x2 |
∴2(a+1)x=0,
∵x为非零实数,
∴a+1=0,即a=-1
(II)由(I)得f(x)=
| x2-1 |
| x2 |
∴E={y|y=f(x),x∈{-1,1,2}}={0,
| 3 |
| 4 |
而λ=lg22+lg2lg5+lg5-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
∴λ∈E
(III)∵f′(x)=
| 2 |
| x3 |
∴f(x)=
| x2-1 |
| x2 |
| 1 |
| m |
| 1 |
| n |
又∵函数f(x)的值域为[2-3m,2-3n],
∴
解析 |