题目
| x2+1 |
| x+c |
(1)求f(x)的表达式;
(2)n≥2,n∈N时,求证:[f(1)-1]|[f(22)-22]+…+[f(n2)-n2]<2;
(3)对n≥2,n∈N,x>0,求证[f(x)]n-f(xn)≥2n-2.
答案
∴f(x)是奇函数,代入特值,f(1)=-f(-1),求得c=0
∴f(x)=
| x2+1 |
| x |
(2)∵n≥2,n∈N
∴f(n2)-n2=
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴[f(1)-1]+…+[f(n2)-n2]<1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
(3)[f(x)]n-f(xn)=(x+
| 1 |
| x |
| 1 |
| xn |
=
| C | 1n |
| 1 |
| x |
| C | 2n |
| 1 |
| x |
| C | n-1n |
| 1 |
| x |
=
| 1 |
| 2 |
| C | 1n |
| 1 |
| x |
| C | n-1n |
| 1 |
| x |
| C | 2n |
| 1 |
| x |
| C | n-2n |
| 1 |
| x |
| C | n-1n |
| 1 |
| x |
| C | 1n |
| 1 |
| x |
≥
| 1 |
| 2 |
| C | n1 |
解析 |