题目
x2+1 |
x+c |
(1)求f(x)的表达式;
(2)n≥2,n∈N时,求证:[f(1)-1]|[f(22)-22]+…+[f(n2)-n2]<2;
(3)对n≥2,n∈N,x>0,求证[f(x)]n-f(xn)≥2n-2.
答案
∴f(x)是奇函数,代入特值,f(1)=-f(-1),求得c=0
∴f(x)=
x2+1 |
x |
(2)∵n≥2,n∈N
∴f(n2)-n2=
1 |
n2 |
1 |
(n-1)n |
1 |
n-1 |
1 |
n |
∴[f(1)-1]+…+[f(n2)-n2]<1+(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
n |
(3)[f(x)]n-f(xn)=(x+
1 |
x |
1 |
xn |
=
C | 1n |
1 |
x |
C | 2n |
1 |
x |
C | n-1n |
1 |
x |
=
1 |
2 |
C | 1n |
1 |
x |
C | n-1n |
1 |
x |
C | 2n |
1 |
x |
C | n-2n |
1 |
x |
C | n-1n |
1 |
x |
C | 1n |
1 |
x |
≥
1 |
2 |
C | n1 |
解析 |