题目
(Ⅰ)令F(x)=xf"(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.
答案
| 2lnx |
| x |
| 2a |
| x |
故F(x)=xf"(x)=x-2lnx+2a,x>0,
于是F′(x)=1-
| 2 |
| x |
| x-2 |
| x |
∴知F(x)在(0,2)内是减函数,在(2,+∞)内是增函数,
所以,在x=2处取得极小值F(2)=2-2ln2+2a.
(Ⅱ)证明:由a≥0知,F(x)的极小值F(2)=2-2ln2+2a>0.
于是知,对一切x∈(0,+∞),恒有F(x)=xf"(x)>0.
从而当x>0时,恒有f"(x)>0,故f(x)在(0,+∞)内单调增加.
所以当x>1时,f(x)>f(1)=0,即x-1-ln2x+2alnx>0.
故当x>1时,恒有x>ln2x-2alnx+1.