已知f(x)是定义在[-e,0)∪(0,e]上的

难度:一般 题型:解答题 来源:不详

题目

已知f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+2lnx,(a<0,a∈R)
(1)求f(x)的解析式;
(2)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由.

答案

(1)设x=[-e,0),则-x∈(0,e]∴f(-x)=-ax+2ln(-x).∵f(x)是定义在[-e,0)∪(0,e],上的奇函数,∴f(x)=-f(-x)=ax-2ln(-x).
故函数f(x)的解析式为:f(x)=

解析