题目
1-x |
1+x |
(1)判断函数f(x)的奇偶性;
(2)证明函数f(x)有性质:f(x)+f(y)=f(
x+y |
1+xy |
答案
1-x |
1+x |
由f(-x)=log2
1+x |
1-x |
1-x |
1+x |
故知f(x)为奇函数
(2)f(x)+f(y)=log2
1-x |
1+x |
1-y |
1+y |
1-x |
1+x |
1-y |
1+y |
1+xy-(x+y) |
1+xy+(x+y) |
=log2
1-
| ||
1+
|
x+y |
1+xy |
1-x |
1+x |
x+y |
1+xy |
1-x |
1+x |
1+x |
1-x |
1-x |
1+x |
1-x |
1+x |
1-y |
1+y |
1-x |
1+x |
1-y |
1+y |
1+xy-(x+y) |
1+xy+(x+y) |
1-
| ||
1+
|
x+y |
1+xy |