题目
| 1-x |
| 1+x |
(1)判断函数f(x)的奇偶性;
(2)证明函数f(x)有性质:f(x)+f(y)=f(
| x+y |
| 1+xy |
答案
| 1-x |
| 1+x |
由f(-x)=log2
| 1+x |
| 1-x |
| 1-x |
| 1+x |
故知f(x)为奇函数
(2)f(x)+f(y)=log2
| 1-x |
| 1+x |
| 1-y |
| 1+y |
| 1-x |
| 1+x |
| 1-y |
| 1+y |
| 1+xy-(x+y) |
| 1+xy+(x+y) |
=log2
1-
| ||
1+
|
| x+y |
| 1+xy |
| 1-x |
| 1+x |
| x+y |
| 1+xy |
| 1-x |
| 1+x |
| 1+x |
| 1-x |
| 1-x |
| 1+x |
| 1-x |
| 1+x |
| 1-y |
| 1+y |
| 1-x |
| 1+x |
| 1-y |
| 1+y |
| 1+xy-(x+y) |
| 1+xy+(x+y) |
1-
| ||
1+
|
| x+y |
| 1+xy |