题目
x |
4x+1 |
答案
∵函数f(x)=ax+
x |
4x+1 |
∴f(-x)=f(x)对定义域内每一个x都成立
∴-ax+
-x |
4-x+1 |
x |
4x+1 |
∴-2ax=
x |
4x+1 |
x |
4-x+1 |
x |
4x+1 |
x×4x |
4-x(4x+1) |
x |
4x+1 |
x×4x |
1+4x |
∴(1+2a)x=0对定义域内每一个x都成立
∴1+2a=0
即 a=-
1 |
2 |
故答案为:-
1 |
2 |
x |
4x+1 |
x |
4x+1 |
-x |
4-x+1 |
x |
4x+1 |
x |
4x+1 |
x |
4-x+1 |
x |
4x+1 |
x×4x |
4-x(4x+1) |
x |
4x+1 |
x×4x |
1+4x |
1 |
2 |
1 |
2 |