题目
| x |
| 4x+1 |
答案
∵函数f(x)=ax+
| x |
| 4x+1 |
∴f(-x)=f(x)对定义域内每一个x都成立
∴-ax+
| -x |
| 4-x+1 |
| x |
| 4x+1 |
∴-2ax=
| x |
| 4x+1 |
| x |
| 4-x+1 |
| x |
| 4x+1 |
| x×4x |
| 4-x(4x+1) |
| x |
| 4x+1 |
| x×4x |
| 1+4x |
∴(1+2a)x=0对定义域内每一个x都成立
∴1+2a=0
即 a=-
| 1 |
| 2 |
故答案为:-
| 1 |
| 2 |
| x |
| 4x+1 |
| x |
| 4x+1 |
| -x |
| 4-x+1 |
| x |
| 4x+1 |
| x |
| 4x+1 |
| x |
| 4-x+1 |
| x |
| 4x+1 |
| x×4x |
| 4-x(4x+1) |
| x |
| 4x+1 |
| x×4x |
| 1+4x |
| 1 |
| 2 |
| 1 |
| 2 |