题目
(1)求数列{yn}的通项公式;
(2)证明:数列{xn}为等比数列;
(3)设数列{xn}的前n项和为Sn,若对一切正整数n,Sn<a恒成立,求实数a的取值范围.
答案
∴log2x1+log2x5=8,log2x1•log2x5=12,
∵等差数列{yn}满足yn=log2xn,且其公差为负数,
∴log2x1=6,log2x5=2.
y1=log2x1=6,y5=log2x5=2,yn=7-n.
(2)∵yn=log2xn=7-n,yn+1=log2xn+1=6-n
∴
xn+1 |
xn |
26-n |
27-n |
1 |
2 |
∴数列{xn}为等比数列.
(3)Sn=
26(1-
| ||
1-
|
1 |
2n |
lim |
n→∞ |
故所求a的取值范围为a≥128.