设函数f(x)=x|x-a|+b(1)求证:f(

难度:一般 题型:解答题 来源:南通模拟

题目

设函数f(x)=x|x-a|+b
(1)求证:f(x)为奇函数的充要条件是a2+b2=0.
(2)设常数b<2

答案

(1)充分性:若a2+b2=0∴a=b=0
∴f(x)=x|x|对任意的x∈R都有f(-x)+f(x)=0
∴f(x)为奇函数,故充分性成立.(2分)
必要性:若f(x)为奇函数
则对任意的x∈R都有f(-x)+f(x)=0恒成立,
即-x|-x-a|+b+x|x-a|+b=0
令x=0,得b=0;令x=a,得a=0.∴a2+b2=0(6分)

(2)由b<2

解析