已知函数f(x)满足f(ax-1)=lgx+2

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)满足f(ax-1)=lg

x+2
x-3
(a≠0).
(1)求f(x)的表达式;
(2)求f(x)的定义域;
(3)判定f(x)的奇偶性与实数a之间的关系,并说明理由.

答案

(1)设ax-1=t则x=

t+1
a

由于f(ax-1)=lg
x+2
x-3
(a≠0)

f(t)=lg
t+1
a
+2
t+1
a
-3
=lg
t+1+2a
t+1-3a

从而f(x)=lg
x+1+2a
x+1-3a
(4分)
(2)a>0时,
x+1+2a
x+1-3a
>0
⇒x∈(-∞,-2a-1)∪(3a-1,+∞),
即函数的定义域为(-∞,-2a-1)∪(3a-1,+∞),
a<0时,
x+1+2a
x+1-3a
>0
⇒x∈(-∞,3a-1)∪(-2a-1,+∞). 
即定义域为(-∞,3a-1)∪(-2a-1,+∞).(8分)
(3)当定义域关于原点对称时a=2,此时f(x)=lg
x+5
x-5
(10分)
f(-x)=lg
x-5
x+5
=-f(x)
,∴f(x)为奇函数,(13分)
当a≠0且a≠2时,f(x)的定义域不关于原点对称,
故f(x)为非奇非偶函数. (15分)

解析

闽ICP备2021017268号-8