已知函数f(x)=log4(4x+1)+kx (

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=log4(4x+1)+kx (x∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)-m=0有解,求m的取值范围.

答案

(1)由函数f(x)=log4(4x+1)+kx(x∈R)是偶函数.
可知f(x)=f(-x)
∴log4(4x+1)+kx=log4(4-x+1)-kx((2分)
log4

4x+1
4-x+1
=-2kx
∴log44x=-2kx(4分)
∴x=-2kx对x∈R恒成立.(6分)
∴k=-
1
2
.(7分)
(2)由m=f(x)=log4(4x+1)-
1
2
x

m=log4
4x+1
2x
=log4(2x+
1
2x
)
.(9分)∵2x+
1
2x
≥2
(11分)
m≥
1
2
(13分)
故要使方程f(x)-m=0有解,m的取值范围:m≥
1
2
.(14分)

解析

闽ICP备2021017268号-8