f(x)是定义在R上的偶函数,当x<0时,f(x

难度:简单 题型:单选题 来源:不详

题目

f(x)是定义在R上的偶函数,当x<0时,f(x)+x•f"(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为(  )

A.(-4,0)∪(4,+∞) B.(-4,0)∪(0,4) C.(-∞,-4)∪(4,+∞) D.(-∞,-4)∪(0,4)

答案

设g(x)=xf(x),则g"(x)=[xf(x)]"=x"f(x)+xf"(x)=xf′(x)+f(x)<0,
∴函数g(x)在区间(-∞,0)上是减函数,
∵f(x)是定义在R上的偶函数,
∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(0,+∞)上是减函数,
∵f(-4)=0,
∴f(4)=0;
即g(4)=0,g(-4)=0
∴xf(x)>0化为g(x)>0,
设x>0,故不等式为g(x)>g(4),即0<x<4
设x<0,故不等式为g(x)>g(-4),即x<-4
故所求的解集为(-∞,-4)∪(0,4)
故选D.

解析

闽ICP备2021017268号-8