试构造一个函数f(x),x∈D,使得对一切x∈D

难度:一般 题型:解答题 来源:不详

题目

试构造一个函数f(x),x∈D,使得对一切x∈D有|f(-x)|=|f(x)|恒成立,但是f(x)既不是奇函数又不是偶函数,则f(x)可以是______.

答案

∵函数f(x),x∈D,使得对一切x∈D有|f(-x)|=|f(x)|恒成立,
∴[f(-x)]2=[f(x)]2,即[f(-x)+f(x)]•[f(-x)-f(x)]=0,
∴f(-x)=-f(x)或f(-x)=f(x);
而f(x)既不是奇函数又不是偶函数,
故可令函数f(x)=

解析