已知函数y=13x3+x2+x的图象C上

难度:简单 题型:单选题 来源:不详

题目

已知函数y=

1
3
x3+x2+x的图象C上存在一点P满足:若过点P的直线l与曲线C交于不同于P的两点M(x1,y1)、N(x2,y2),恒有y1+y2为定值y0,则y0的值为(  )
A.-
1
3
B.-
2
3
C.-
4
3
D.-2

答案

P为定点,y1+y2为定值,可以得出M、N两点关于P点对称
y′=x2+2x+1
y〃=2x+2
由于三次函数的对称中心点处的二阶导数为0
∴y〃=2x+2=0
x=-1
故P点为(-1,-

1
3

y0=y1+y2=-
1
3
×2=-
2
3

故选B.

解析

闽ICP备2021017268号-8