已知函数f(x)=logax和g(x)=2log

难度:一般 题型:解答题 来源:深圳一模

题目

已知函数f(x)=logax和g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R)的图象在X=2处的切线互相平行.
(1)求T的值;
(2)设F(x)=g(x)-f(x),当x∈[1,4]时,F(x)≥2恒成立,求A的取值范围.

答案

(I)∵f′(x)=

1
x
logae,g′(x)=
4
2x+t-2
logae(3分)
∵函数f(x)和g(x)的图象在X=2处的切线互相平行,
∴f"(2)=g"(2)(5分)
1
2
logae=
4
2×2+t-2
logae

∴t=6(6分)
(II)∴F(x)=g(x)-f(x)=2loga(2x+4)-logax=loga
(2x+4)2
x
,x∈[1,4]

h(x)=
(2x+4)2
x
=4x+
16
x
+16,x∈[1,4]
h′(x)=4-
16
x2
=
4(x-2)(x+2)
x2
,x∈[1,4]

∴当1≤x<2时,h′(x)<0,
当2<x≤4时,h′(x)>0.h(x)在[1,2)是单调减函数,在(2,4]是单调增函数.(9分)
∴h(x)min=h(2)=32,∴h(x)max=h(1)=h(4)=36
∴当0<a<1时,有F(x)min=loga36,当a>1时,有F(x)min=loga32.
∵当x∈[1,4]时,F(x)≥2恒成立,∴F(x)min≥2(10分)
∴满足条件的a的值满足下列不等式组

解析