题目
(Ⅰ)若a=-4,求函数f(x)的极值;
(Ⅱ)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.
答案
4 |
x |
∴f"(x)>0⇒x>1,f"(x)<0⇒0<x<1.∴函数f(x)有极小值f(1)=3.
(Ⅱ)∵f(x)=x2+2x+alnx,
∴f(2t-1)≥2f(t)-3⇒2t2-4t+2≥2alnt-aln(2t-1)=aln
t2 |
2t-1 |
当t≥1时,t2≥2t-1,∴ln
t2 |
2t-1 |
2(t-1)2 | ||
ln
|
∴ln
t2 |
2t-1 |
(t-1)2 |
2t-1 |
(t-1)2 |
2t-1 |
t2 |
2t-1 |