已知函数f(x)=ax2+1bx+c(a、

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=

ax2+1
bx+c
(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

答案

由f(-x)=-f(x),得-bx+c=-(bx+c),
∴c=0.
由f(1)=2,得a+1=2b①
由f(2)<3,得

4a+1
2b
<3②
由①②得
4a+1
a+1
<3③
变形可得(a+1)(a-2)<0,
解得-1<a<2.
又a∈Z,
∴a=0或a=1.
若a=0,则b=
1
2
,与b∈Z矛盾,
若a=1,则b=1,
故a=1,b=1,c=0.

解析

闽ICP备2021017268号-8