设定义在R上的奇函数f(x)满足f(x+2)=-

难度:一般 题型:解答题 来源:不详

题目

设定义在R上的奇函数f(x)满足f(x+2)=-f(x),当0≤x≤1时,f(x)=2x(1-x),求f(-

25
2
)值.

答案

∵函数f(x)满足f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即函数f(x)周期为4的周期函数,
故f(-

25
2
)=f(4×3-
25
2
)=f(-0.5)
又∵函数f(x)是定义在R上的奇函数
∴f(-0.5)=-f(0.5)=-
1
2

故f(-
25
2
)值为:-
1
2

解析

闽ICP备2021017268号-8