已知函数f(x)=x2(x-a)+bx(Ⅰ)若a

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=x2(x-a)+bx
(Ⅰ)若a=3,b=l,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若b=a+

10
3
,函数f(x)在(1,+∞)上既能取到极大值又能取到极小值,求a的取值范围;
(Ⅲ)若b=0,不等式
f(x)
x
+
1nx+1≥0对任意的x∈[
1
2
,+∞)
恒成立,求a的取值范围.

答案

(Ⅰ)若a=3,b=l,则f(x)=x3-3x2+x,∴f′(x)=3x2-6x+1
∴f′(1)=3×12-6+1=-2,f(1)=-1
∴函数f(x)在点(1,f(1))处的切线方程为y+1=-2(x-1),即y=-2x+1;
(Ⅱ)∵b=a+

10
3
,∴f(x)=x3-ax2+(a+
10
3
)x,∴f′(x)=3x2-2ax+a+
10
3

∵函数f(x)在(1,+∞)上既能取到极大值又能取到极小值,

解析