设函数f(x)是定义在[-1,0)∪(0,1]上

难度:一般 题型:解答题 来源:不详

题目

设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+

1
x2
(a为实数).
(Ⅰ)求当x∈(0,1]时,f(x)的解析式;
(Ⅱ)若f(x)在(0,1]上是增函数,求a的取值范围;
(Ⅲ)是否存在a,使得当x∈(0,1]时,f(x)有最大值-6.

答案

(Ⅰ)∵函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,
当x∈[-1,0)时,f(x)=2ax+

1
x2
(a为实数).
∴当x∈(0,1]时,-x∈[-1,0).
f(x)=-f(-x)=-(-2ax+
1
x2
)=2ax-
1
x2
…(3分)
(II)∵x∈(0,1]时,f(x)=2ax- 
1
x2

f′(x)=2a+
2
x3

因为f(x)在(0,1]上是增函数,
所以f"(x)≥0在(0,1]上恒成立,
a≥-
1
x3
在(0,1]上恒成立,
g(x)=-
1
x3
,x∈(0,1]

g(x)在(0,1]上是单调增函数,
所以[g(x)]max=g(1)=-1,
所以a≥-1.…(8分)
(Ⅲ)①当a≥-1时,
由(II)知f(x)在(0,1]上是增函数,
所以[f(x)]max=f(1)=-6,
解得a=-
5
2
,与a≥-1矛盾.…(10分)
②当a<-1时,
令f"(x)=0,x=
3 -
1
a

解析