题目
| π |
| 2 |
| π |
| 2 |
| A.f(1)<f(2)<f(3) | B.f(2)<f(3)<f(1) | C.f(3)<f(2)<f(1) | D.f(3)<f(1)<f(2) |
答案
| π |
| 2 |
又当x∈(-
| π |
| 2 |
| π |
| 2 |
所以f(x)在(-
| π |
| 2 |
| π |
| 2 |
又f(2)=f(π-2),f(3)=f(π-3),且0<π-3<1<π-2<
| π |
| 2 |
所以f(π-3)<f(1)<f(π-2),即f(3)<f(1)<f(2).
故选D
| π |
| 2 |
| π |
| 2 |
| A.f(1)<f(2)<f(3) | B.f(2)<f(3)<f(1) | C.f(3)<f(2)<f(1) | D.f(3)<f(1)<f(2) |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |