题目
1 |
2 |
x-y |
1-xy |
1 |
2 |
2xn | ||
1+
|
(Ⅰ)求f(0),并证明f(x)为奇函数;
(Ⅱ)求数列{f(xn)}的通项公式;
(Ⅲ)对于(Ⅱ)中的数列{f(xn)},证明:
n |
2 |
5 |
6 |
f(x1)-1 |
f(x2)-1 |
f(x2)-1 |
f(x3)-1 |
f(xn)-1 |
f(xn+1)-1 |
n |
2 |
答案
∴f(x)在(-1,1)上为为奇函数.
(2)由x1=
1 |
2 |
2xn | ||
1+
|
∵f(xn)-f(-xn)=f(
2xn |
1+xn2 |
∴f(xn+1)=2f(xn),f(x1)=1
∴f(xn)是以1为首项,2为公比的等比数列
∴f(xn)=2n-1
(3)
f(x1)-1 |
f(x2)-1 |
f(x2)-1 |
f(x3)-1 |
f(xn)-1 |
f( xn+1)-1 |
0 |
2-1 |
2-1 |
22-1 |
2n-1-1 |
2n+1-1 |
1 |
2 |
1 |
2 |
1 |
2 |
n |
2 |