题目
| π |
| 2 |
答案
f[sin(
| π |
| 2 |
⇔f[sin(
| π |
| 2 |
⇔sin(
| π |
| 2 |
整理得:m>
| 2+cosθ |
| 2-cosθ |
设y=
| 2+cosθ |
| 2-cosθ |
下面只需求y=
| 2+cosθ |
| 2-cosθ |
由于y(2-cosθ)=2+cosθ,cosθ=
| 2y-2 |
| y+1 |
| 2y-2 |
| y+1 |
| 1 |
| 3 |
可知y的最大值=3,
∴m>3
∴实数m的取值范围为(3,+∞).
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| 2+cosθ |
| 2-cosθ |
| 2+cosθ |
| 2-cosθ |
| 2+cosθ |
| 2-cosθ |
| 2y-2 |
| y+1 |
| 2y-2 |
| y+1 |
| 1 |
| 3 |