题目
| 1 |
| 2 |
| x+y |
| 1-xy |
(I)判断为f(x)在(-1,1)上的奇偶性:
(II)对数列x1=
| 1 |
| 2 |
| 2xn |
| 1+xn2 |
(111)求证:
| 1 |
| f(x1) |
| 1 |
| fx2) |
| 1 |
| f(xn) |
| 2n+5 |
| n+2 |
答案
令y=-x,则f(x)+f(-x)=f(0)=0
所以f(-x)=-f(x)
所以f(x)为奇函数;
(II)∵x1=
| 1 |
| 2 |
| 1 |
| 2 |
∵xn+1=
| 2xn |
| 1+xn2 |
| 2xn |
| 1+xn2 |
∴
| f(xn+1) |
| f(xn) |
∴{f(xn)}是以-1为首项,2为公比的等比数列
∴f(xn)=-2n-1;
(III)证明:∵
| 1 |
| f(x1) |
| 1 |
| fx2) |
| 1 |
| f(xn) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
而
| 2n+5 |
| n+2 |
| 1 |
| n+2 |
∴
| 1 |
| f(x1) |
| 1 |
| fx2) |
| 1 |
| f(xn) |
| 2n+5 |
| n+2 |