题目
(1)当a=
1 |
3 |
1 |
3 |
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-
1 |
4 |
答案
1 |
3 |
1 |
3 |
依题意 f′(x)=x2+2bx+b-
1 |
3 |
1 |
3 |
∴△=4b2-4b<0,解得 0<b<1
所以b的取值范围是(0,1)…(4分)
(2)因为f(x)=ax3+bx2+(b-a)x为奇函数,所以b=0,所以f(x)=ax3-ax,f"(x)=3ax2-a.
又f(x)在x=1处的切线垂直于直线x+2y-3=0,所以a=1,即f(x)=x3-x.…(6分)
∴f(x)在(-∞,-
|