题目
(Ⅰ)求f[f(-1)]的值;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)求函数f(x)在区间[t,t+1](t>0)上的最小值.
答案
所以f(-1)=-f(1),并且f(0)=0.
又因为当x>0时,f(x)=x2-4x+3,
所以f(1)=0,
所以f(-1)=0.
所以f[f(-1)]=f(0)=0…4′
(Ⅱ)设x<0则-x>0,
因为当x>0时,f(x)=x2-4x+3,
所以f(-x)=x2+4x+3,
又因为f(x)是定义在实数集R上的奇函数,
所以f(x)=-x2-4x-3.
所以f(x)=
解析 |