题目
| 1 |
| 3 |
| 1 |
| 8 |
A.(0,
|
B.(
|
C.(0,
|
D.(2,+∞) |
答案
因为函数f(x)是定义在R上的偶函数,
所以不等式f(log
| 1 |
| 8 |
| 1 |
| 8 |
因为函数f(x)在[0,+∞)上是增函数,且f(
| 1 |
| 3 |
所以f(|log
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 8 |
| 1 |
| 3 |
即log
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 8 |
| 1 |
| 3 |
解得0<x<
| 1 |
| 2 |
方法2:已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f(
| 1 |
| 3 |
所以f(x)在(-∞,0]上是减函数,且f(-
| 1 |
| 3 |
①若log
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 2 |
②若log
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 3 |
综上不等式f(log
| 1 |
| 8 |
| 1 |
| 2 |
故选A.