题目
| 4 |
| x |
(1)判断f(x)的奇偶性;
(2)判断f(x)在(0,2]和[2,+∞)的单调性,并用定义证明.
答案
| 4 |
| x |
显然,定义域关于原点对称.
f(-x)=-x+
| 4 |
| -x |
| 4 |
| x |
所以.f(x)为奇函数
(2)①任取x1<x2且x1,x2∈(0,2]
由题意,f(x1)-f(x2)=x1+
| 4 |
| x1 |
| 4 |
| x2 |
=(x1-x2)+4
| x2-x1 |
| x1x2 |
=(x1-x2)(1-
| 4 |
| x1x2 |
因为x1<x2且x1,x2∈(0,2]
则x1-x2<0;
0<x1x2<4,
| 4 |
| x1x2 |
| 4 |
| x1x2 |
=(x1-x2)(1-
| 4 |
| x1x2 |
故f(x1)>f(x2)
所以,f(x)在(0,2]为上的减函数.
②任取x1<x2且x1,x2∈[2,+∞)
由题意,f(x1)-f(x2)=x1+
| 4 |
| x1 |
| 4 |
| x2 |
=(x1-x2)+4
| x2-x1 |
| x1x2 |
=(x1-x2)(1-
| 4 |
| x1x2 |
因为x1<x2且x1,x2∈[2,+∞)
则x1-x2<0;
x1x2>4,0<
| 4 |
| x1x2 |
| 4 |
| x1x2 |
=(x1-x2)(1-
| 4 |
| x1x2 |
故f(x1)<f(x2)
所以,f(x)在为[2,+∞)上的增函数.
∴f(x)在(0,2]上为减函数,[2,+∞)上为增函数.