题目
| 1 |
| |2x-b| |
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由;
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.
答案
| 1 |
| |2x-b| |
且函数的定义域为D=(-∞,
| b |
| 2 |
| b |
| 2 |
又y=f(x)是偶函数,故定义域D关于原点对称.
于是,b=0.
又对任意x∈D,有f(x)=f(-x),可得b=0.
因此所求实数b=0.…(3分)
(2)由(1)可知,f(x)=a-
| 1 |
| 2|x| |
由f(x)=a-
| 1 |
| 2|x| |
知:f(x)在区间(0,+∞)上是增函数,f(x)在区间(-∞,0)上是减函数
又n>m>0,
∴y=f(x)在区间[m,n]上是增函数.
∴有
解析 |