题目
| px2+2 |
| x-q |
(1)求实数p,q的值;
(2)判断函数f(x)在[1,+∞)上的单调性,并证明.
答案
| px2+2 |
| x-q |
∴f(2)=
| 4p+2 |
| 2-q |
即4p+2=10-5q,
∴4p+5q=8,
由f(x)+f(-x)=0得
| px2+2 |
| x-q |
| px2+2 |
| -x-q |
| px2+2 |
| x+q |
∴-q=q,解得q=0,
∴p=2.
(2)∵p=2,q=0,
∴函数f(x)=
| px2+2 |
| x-q |
| 2x2+2 |
| x |
| 2 |
| x |
f(x)在[1,+∞)上的单调递增.
证明:设x2>x1≥1,
则f(x2)-f(x1)=2(x2-x1)+
| 2(x1-x2) |
| x1x2 |
| x1x2-1 |
| x1x2 |
∵x2>x1≥1,
∴x2-x1>0,x2x1>1,
∴f(x2)-f(x1)>0,
即f(x2)>f(x1),
∴函数f(x)在[1,+∞)上的单调递增.