题目
| x2 |
| x2+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
A.2010
|
B.2011
|
C.2012
|
D.2013
|
答案
| x2 |
| x2+1 |
∴f(
| 1 |
| x |
| ||
|
| 1 |
| 1+x2 |
∴f(x)+f(
| 1 |
| x |
则f(1)+f(2)+…+f(2013)+f(2014)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=f(1)+[f(2)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2014 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故选:D.
| x2 |
| x2+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
A.2010
|
B.2011
|
C.2012
|
D.2013
|
| x2 |
| x2+1 |
| 1 |
| x |
| ||
|
| 1 |
| 1+x2 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |