f(x)=x2-2mx+m,g(x)=-13

难度:一般 题型:填空题 来源:不详

题目

f(x)=x2-2mx+m,g(x)=-

1
3
(2x-
1
x
).若对任意x1∈[
1
2
,2]
,总存在x2∈[
1
2
,2]
,使得f(x1)≥g(x2),则m的取值范围是______.

答案

∵对任意x1∈[

1
2
,2],总存在x2∈[
1
2
,2]
,使得f(x1)≥g(x2),
∴f(x1min≥g(x2min
f(x)=x2-2mx+m,g(x)=-
1
3
(2x-
1
x
)

∴f′(x)=2x-2m,g(x)=-
2
3
-
1
3x2

由f′(x)=2x-2m=0,得x=m,
x1∈[
1
2
,2]
,f(m)=-m2+m,
∴f(x1min=f(2)=4-3m.
g(x)=-
2
3
-
1
3x2
<0,
x2∈[
1
2
,2]
时,g(x2)是减函数,
∴g(x2min=g(2)=-
1
3
(2×2-
1
2
)
=-
7
6

∵f(x1min≥g(x2min
∴4-3m≥-
7
6

解得m≤
31
18

故答案为:(-∞,
31
18
].

解析

闽ICP备2021017268号-8