题目
| 1 |
| 3 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
答案
| 1 |
| 2 |
| 1 |
| 2 |
∴f(x1)min≥g(x2)min,
∵f(x)=x2-2mx+m,g(x)=-
| 1 |
| 3 |
| 1 |
| x |
∴f′(x)=2x-2m,g′(x)=-
| 2 |
| 3 |
| 1 |
| 3x2 |
由f′(x)=2x-2m=0,得x=m,
∵x1∈[
| 1 |
| 2 |
∴f(x1)min=f(2)=4-3m.
∵g′(x)=-
| 2 |
| 3 |
| 1 |
| 3x2 |
∴x2∈[
| 1 |
| 2 |
∴g(x2)min=g(2)=-
| 1 |
| 3 |
| 1 |
| 2 |
| 7 |
| 6 |
∵f(x1)min≥g(x2)min,
∴4-3m≥-
| 7 |
| 6 |
解得m≤
| 31 |
| 18 |
故答案为:(-∞,
| 31 |
| 18 |