题目
(1)若对任意[a,b]⊆I,存在xo∈(a,b)使等式
f(b)-f(a) |
b-a |
(2)求证:当x>c2时,总有f(x)<2x;
(3)若|x1-c1|<1,|x2-c1|<1,求证:|f(x1)-f(x2)|<4.
答案
f(m)-f(c1) |
m-c1 |
m-c1 |
m-c1 |
f(m)-f(c1) |
m-c1 |
(2)设F(x)=f(x)-2x,则F’(x)=f’(x)-2<0,∴F(x)在(c2,+∞)单调递减,
∴F(x)<F(c2)=f(c2)-2c2=0∴f(x)<2x
(3)不妨设x1≤x2,①当x1=x2时,显然成立.
②当x1<x2时,由(Ⅱ)知f(x1)-2x1>f(x2)-2x2,∴f(x1)-f(x2)>2x1-2x2
又∵f’(x)>0,∴f(x2)-f(x1)>0
∴|f(x2)-f(x1)|<2|x2-x1|=2|x2-c1-(x1-c1)|≤2|x2-c1|+2|x1-c1|≤2+2=4,
所以|f(x2)-f(x1)|≤4.