题目
1 |
x |
(1)当a>0时,求该函数的单调区间和极值;
(2)当a>0时,若对∀x>0,均有ax(2-lnx)≤1,求实数a的取值范围.
答案
a |
x |
1 |
x2 |
1 |
a |
1 |
a |
令f/(x)=
a |
x |
1 |
x2 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
(2)当a>0时,若对∀x>0,均有ax(2-lnx)≤1,即∀x>0,2a≤alnx+
1 |
x |
而由(1)知,函数f(x)的极小值即为最小值,
于是:2a≤f(x)min=a(1-lna),解之得:0<a≤
1 |
e |
1 |
x |
a |
x |
1 |
x2 |
1 |
a |
1 |
a |
a |
x |
1 |
x2 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
x |
1 |
e |