已知f1(x)=3|x-1|,f2(x)=a•3
难度:一般
题型:解答题
来源:不详
题目
已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函数f(x)定义为:对每个给定的实数x,f(x)=
答案
| (1)“f(x)=f1(x)对所有实数都成立”等价于“f1(x)≤f2(x)恒成立”,即3|x-1|≤a•3|x-2|,即|x-1|-|x-2|≤log3a恒成立,…(2分)(|x-1|-|x-2|)max=1,所以log3a≥1,a的取值范围是[3,+∞).…(4分) (2)由(1)可知,当a∈[3,+∞)时,f(x)=f1(x),f(0)=3,所以t=2,函数的对称轴为x=1,函数f(x)在[0,1]上单调递减;在[1,2]上单调递增,单调递增区间的长度和为d=1,=.…(6分) 当f2(x)≤f1(x)恒成立时,即|x-1|-|x-2|≥log3a恒成立,(|x-1|-|x-2|)min=-1,所以log3a≤-1. 当a∈(0,]时,f(x)=f2(x)=a•3|x-2|,函数的对称轴为x=2,由f(0)=f(t),可得t=4.函数f(x)在[0,2]上单调递减;在[2,4]上单调递增,单调递增区间的长度和为d=2,=.…(8分) 当a∈(,3)时,解不等式3|x-1|≤a•3|x-2|,即解|x-1|-|x-2|≤log3a,其中-1<log3a<1,解得x≤+log3a, 所以 f(x)= |
|