题目
A.f(0)<f(-0.5)<f(0.6) | B.f(-0.5)<f(0.6)<f(0) |
C.f(0)<f(0.6)<f(-0.5) | D.f(-0.5)<f(0)<f(0.6) |
答案
∴f(x)为偶函数
∴f(-0.5)=f(0.5)
∵f′(x)=2x+sinx,
则函数f(x)在[0,0.6]上单调递增,
所以f(0)<f(0.5)<f(0.6),
即f(0)<f(-0.5)<f(0.6)
故选A
A.f(0)<f(-0.5)<f(0.6) | B.f(-0.5)<f(0.6)<f(0) |
C.f(0)<f(0.6)<f(-0.5) | D.f(-0.5)<f(0)<f(0.6) |