题目
| 1 |
| 2 |
(1)求f(
| 1 |
| 2 |
| k |
| n |
| n-k |
| n |
(2)数列{an}满足:an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
答案
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴2f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
因为f(x)=f(x-1)+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令x=
| k |
| n |
| k |
| n |
| k |
| n |
| 1 |
| 2 |
| k |
| n |
| n-k |
| n |
| 1 |
| 2 |
(2)令sn=f(0)+f(
| 1 |
| n |
| n-1 |
| n |
又sn=f(1)+f(
| n-1 |
| n |
| 1 |
| n |
两式相加2sn=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
| n+1 |
| 2 |
所以sn=
| n+1 |
| 4 |
故an=sn-f(
| 1 |
| 2 |
| n+1 |
| 4 |
| 1 |
| 4 |
| n |
| 4 |
又an+1-an=
| n+1 |
| 4 |
| n |
| 4 |
| 1 |
| 4 |