题目
1 |
2 |
(1)求f(
1 |
2 |
k |
n |
n-k |
n |
(2)数列{an}满足:an=f(0)+f(
1 |
n |
2 |
n |
n-1 |
n |
1 |
2 |
答案
1 |
2 |
∴f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴2f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
因为f(x)=f(x-1)+
1 |
2 |
1 |
2 |
1 |
2 |
令x=
k |
n |
k |
n |
k |
n |
1 |
2 |
k |
n |
n-k |
n |
1 |
2 |
(2)令sn=f(0)+f(
1 |
n |
n-1 |
n |
又sn=f(1)+f(
n-1 |
n |
1 |
n |
两式相加2sn=[f(0)+f(1)]+[f(
1 |
n |
n-1 |
n |
n+1 |
2 |
所以sn=
n+1 |
4 |
故an=sn-f(
1 |
2 |
n+1 |
4 |
1 |
4 |
n |
4 |
又an+1-an=
n+1 |
4 |
n |
4 |
1 |
4 |