已知函数f(x)=12x+1+m,m∈R

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=

1
2x+1
+m,m∈R.
(1)若m=-
1
2
,求证:函数f(x)是R上的奇函数;
(2)若函数f(x)在区间(1,2)没有零点,求实数m的取值范围.

答案

(1 )定义域为R关于原点对称.因为
f(x)+f(-x)=

1
2x+1
-
1
2
+
1
2-x+1
-
1
2
=
1
2x+1
-
1
2
+
2x
2x+1
-
1
2
=0,
所以函数f(x)是定义在R上的奇函数.
(2)f"(x)=-
2xln2
(1+2x)2
<0,
∴f(x)是实数集R上的单调递减函数(不说明单调性扣2分)
又函数f(x)的图象不间断,在区间(1,2)恰有一个零点,有f(1)f(2)<0
即(m+
1
3
)(m+
1
5
)<0解之得-
1
3
<m<-
1
5
,故函数
f(x)在区间(1,2)没有零点时,实数m的取值范围是m≥-
1
5
或m≤-
1
3
…(14分)

解析

闽ICP备2021017268号-8