题目
| 1 |
| 2 |
| x+y |
| 1+xy |
(1)证明:f(x)在(-1,1)上为奇函数;
(2)对数列x1=
| 1 |
| 2 |
| 2xn |
| 1+xn2 |
(3)求证
| 1 |
| f(x1) |
| 1 |
| f(x2) |
| 1 |
| f(xn) |
| 2n+5 |
| n+2 |
答案
令y=-x,则f(x)+f(-x)=f(0)=0
∴f(x)+f(-x)=0∴f(-x)=-f(x)
∴f(x)为奇函数(4分)
(Ⅱ)f(x1)=f(
| 1 |
| 2 |
| 2xn |
| 1+xn2 |
| xn+xn |
| 1+xn•x n |
∴
| f(xn+1) |
| f(xn) |
∴f(xn)=-2n-1
(Ⅲ)
| 1 |
| f(x1) |
| 1 |
| f(x2) |
| 1 |
| f(xn) |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
1-
| ||
1-
|
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
而-
| 2n+5 |
| n+2 |
| 1 |
| n+2 |
| 1 |
| n+2 |
∴
| 1 |
| f(x1) |
| 1 |
| f(x2) |
| 1 |
| f(xn) |
| 2n+5 |
| n+2 |