题目
1 |
2 |
x+y |
1+xy |
(1)证明:f(x)在(-1,1)上为奇函数;
(2)对数列x1=
1 |
2 |
2xn |
1+xn2 |
(3)求证
1 |
f(x1) |
1 |
f(x2) |
1 |
f(xn) |
2n+5 |
n+2 |
答案
令y=-x,则f(x)+f(-x)=f(0)=0
∴f(x)+f(-x)=0∴f(-x)=-f(x)
∴f(x)为奇函数(4分)
(Ⅱ)f(x1)=f(
1 |
2 |
2xn |
1+xn2 |
xn+xn |
1+xn•x n |
∴
f(xn+1) |
f(xn) |
∴f(xn)=-2n-1
(Ⅲ)
1 |
f(x1) |
1 |
f(x2) |
1 |
f(xn) |
1 |
2 |
1 |
22 |
1 |
2n-1 |
1-
| ||
1-
|
1 |
2n-1 |
1 |
2n-1 |
而-
2n+5 |
n+2 |
1 |
n+2 |
1 |
n+2 |
∴
1 |
f(x1) |
1 |
f(x2) |
1 |
f(xn) |
2n+5 |
n+2 |