题目
x+1 |
x-1 |
(1)求函数的定义域,并证明:f(x)=loga
x+1 |
x-1 |
(2)对于x∈[2,4],f(x)=loga
x+1 |
x-1 |
m |
(x-1)2(7-x) |
答案
x+1 |
x-1 |
∴函数的定义域为(-∞,-1)∪(1,+∞).
当x∈(-∞,-1)∪(1,+∞)时,f(-x)=loga
-x+1 |
-x-1 |
x-1 |
x+1 |
x+1 |
x-1 |
∴f(x)=loga
x+1 |
x-1 |
(2)由x∈[2,4]时,f(x)=loga
x+1 |
x-1 |
m |
(x-1)2(7-x) |
①当a>1时,
∴
x+1 |
x-1 |
m |
(x-1)2(7-x) |
∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
设g(x)=(x+1)(x-1)(7-x),x∈[2,4]
则g(x)=-x3+7x2+x-7,
g′(x)=-3x2+14x+1,
∴当x∈[2,4]时,g′(x)>0.
∴y=g(x)在区间[2,4]上是增函数,g(x)min=g(2)=15.
∴0<m<15.
②当0<a<1时,由x∈[2,4]时,
f(x)=loga
x+1 |
x-1 |
m |
(x-1)2(7-x) |
∴
x+1 |
x-1 |
m |
(x-1)2(7-x) |
∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
设g(x)=(x+1)(x-1)(7-x),x∈[2,4],
由①可知y=g(x)在区间[2,4]上是增函数,
g(x)max=g(4)=45,∴m>45.
∴m的取值范围是(0,15)∪(45,+∞).