已知函数f(x)和g(x)的定义域都是实数集R,

难度:一般 题型:填空题 来源:不详

题目

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数,且当x<0时,f"(x)g(x)+f(x)g"(x)>0,g(-2)=0,则不等式f(x)g(x)>0的解集是______.

答案

因 f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]">0
故f(x)g(x)在x<0时递增,
又∵f(x),g(x)分别是定义R上的奇函数和偶函数,
∴f(x)g(x)为奇函数,关于原点对称,所以f(x)g(x)在x>0时也是增函数.
∵f(2)g(2)=0,∴f(-2)g(-2)=0
所以f(x)g(x)>0的解集为:0<x<2或x>2
故答案为(-2,0)∪(2,+∞).

解析

闽ICP备2021017268号-8