已知函数f(x)=x4-2ax2.(I)求证:方

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=x4-2ax2
(I)求证:方程f(x)=1有实根;
(II)h(x)=f(x)-x在[0,1]上是单调递减的,求实数a的取值范围;
(III)当x∈[0,1]时,关于x的不等式|f′(x)|>1的解集为空集,求所有满足条件的实数a的值.

答案

(I)要证x4-2ax2=1的实根,
设t=x2,也就是证明方程t2-2at=1有非负实数根.
而△=4a2+4>0,故可设t2-2at-1=0的两根为t1,t2
t1t2=-1,∴t1,t2一正一负,
∴方程有正根
∴方程f(x)=1有实根;
(II)由题设知对任意的x∈[0,1]时,
h′(x)=f′(x)-1=4x3-4ax-1≤0恒成立,
x=0时显然成立;
对任意的0<x≤1,a≥x2-

1
4x
,∴a≥(x2-
1
4x
)max
而g(x)=x2-
1
4x
在(0,1]上单调增,
∴a≥f(1)=
3
4

∴a的取值范围为[
3
4
,+∞).
(III)由题设知,当x∈[0,1]时,|4x3-4ax|≤1恒成立
记F(x)=4x3-4ax
若a≤0则F(1)=4-4a≥4,不满足条件;
若a>0则F′(x)=12x2-4a=12(x-

解析