题目
| 1-x2 |
| 1+x+x2 |
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(et+2)x2+etx+et-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有f[(
| λa+μb |
| λ+μ |
| λa2+μb2 |
| λ+μ |
| λa+μb |
| λ+μ |
| λa2+μb2 |
| λ+μ |
答案
| -2x(1+x+x2)-(2x+1)(1-x2) |
| (1+x+x2)2 |
-[x-(-2+
|
| 1-x2 |
| 1+x+x2 |
| λa+μb |
| λ+μ |
| λa2+μb2 |
| λ+μ |
| λa+μb |
| λ+μ |
| λa2+μb2 |
| λ+μ |
| -2x(1+x+x2)-(2x+1)(1-x2) |
| (1+x+x2)2 |
-[x-(-2+
|