题目
1-x2 |
1+x+x2 |
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(et+2)x2+etx+et-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有f[(
λa+μb |
λ+μ |
λa2+μb2 |
λ+μ |
λa+μb |
λ+μ |
λa2+μb2 |
λ+μ |
答案
-2x(1+x+x2)-(2x+1)(1-x2) |
(1+x+x2)2 |
-[x-(-2+
|
1-x2 |
1+x+x2 |
λa+μb |
λ+μ |
λa2+μb2 |
λ+μ |
λa+μb |
λ+μ |
λa2+μb2 |
λ+μ |
-2x(1+x+x2)-(2x+1)(1-x2) |
(1+x+x2)2 |
-[x-(-2+
|