设定义域为R的函数f(x)满足下列条件:①对任意

难度:简单 题型:单选题 来源:不详

题目

设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x∈[-1,1],都有

f(x1)-f(x2)  
x1-x2
>0,且f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )
A.-2≤t≤2 B.t≤
1
2
或t=0或t≥
1
2
C.-
1
2
≤t≤
1
2
D.t≤-2或t=0或t≥2

答案

由f(x)+f(-x)=0得,f(x)=-f(-x),
则定义域为R的函数f(x)是奇函数,
∵对任意x∈[-1,1],都有

f(x1)-f(x2)
x1-x2
>0,
∴f(x)在[-1,1]上是增函数,
则f(x)在[-1,1]上的最大值是f(1)=-f(-1)=1,
∵f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,
∴t2-2at≥0对所有的a∈[-1,1]都成立,
设g(a)=t2-2at,a∈[-1,1],

解析