题目
| m-2sinx |
| cosx |
| π |
| 2 |
答案
| π |
| 2 |
任取x1,x2∈(0,
| π |
| 2 |
| m-2sinx1 |
| cosx1 |
| m-2sinx2 |
| cosx2 |
由0<x1<x2<
| π |
| 2 |
| 2sin(x1-x2) |
| cosx2-cosx1 |
上式恒成立的条件为:m<(
| 2sin(x1-x2) |
| cosx2-cosx1 |
| π |
| 2 |
由于
| 2sin(x1-x2) |
| cosx2-cosx1 |
4sin
| ||||
2sin
|
2cos
| ||
sin
|
2(cos
| ||||||||
sin
|
2(1+tan
| ||||
tan
|
且当0<x1<x2<
| π |
| 2 |
| x1 |
| 2 |
| x2 |
| 2 |
| π |
| 4 |
| x1 |
| 2 |
| x2 |
| 2 |
从而(1+tan
| x1 |
| 2 |
| x2 |
| 2 |
| x1 |
| 2 |
| x2 |
| 2 |
| x1 |
| 2 |
| x2 |
| 2 |
有
2(1+tan
| ||||
tan
|
即m的取值范围为(-∞,2].
故答案为(-∞,2].