题目
| ||||||
| n |
(1)若数列{an}倒均数是Vn=
| n+2 |
| 2 |
(2)若等比数列{bn}的公比q=2,其倒均数为Vn,问是否存在正整数m,使得当n≥m(n∈N*)时,nVn<
| 15 |
| 8b1 |
答案
| n+2 |
| 2 |
∴
| ||||||
| n |
| n+2 |
| 2 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n2+2n |
| 2 |
当n≥2时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| (n-1)2+2(n-1) |
| 2 |
两式相减可得
| 1 |
| an |
| 2n+1 |
| 2 |
∴an=
| 2 |
| 2n+1 |
∵n=1时,
| 1 |
| a1 |
| 3 |
| 2 |
| 2 |
| 3 |
∴an=
| 2 |
| 2n+1 |
(2)∵等比数列{bn}的公比q=2,∴{
| 1 |
| bn |
| 1 |
| 2 |
∴等比数列{bn}的倒均数为Vn=
2[1-(
| ||
| b1n |
不等式nVn<
| 15 |
| 8b1 |
2[1-(
| ||
| b1 |
| 15 |
| 8b1 |
若b1<0,则不等式为2[1-(
| 1 |
| 2 |
| 15 |
| 8 |
| 15 |
| 8b1 |
若b1>0,则不等式为2[1-(
| 1 |
| 2 |
| 15 |
| 8 |
| 15 |
| 8b1 |