已知函数f(x)是定义在区间(-1,1)上的奇函
难度:一般
题型:填空题
来源:不详
题目
|
已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
______. |
答案
∵f(x)是定义在区间(-1,1)上的奇函数 ∴f(-2a2+2)+f(a2+2a+1)<0,即为f(a2+2a+1)<f(2a2-2) ∵f′(x)<0 ∴f(x)在(-1,1)上单调递减 ∴a2+2a+1>2a2-2 解得-1<a<- |