题目
设P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一个圆,使所有的点Pn(xn,yn)(n∈N*)都在这个圆内或圆上,那么称这个圆为点Pn(xn,yn)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.
(Ⅰ) 若点P(x,y)在映射f下的象为点Q(2x,1-y).
①求映射f下不动点的坐标;
②若P1的坐标为(1,2),判断点Pn(xn,yn)(n∈N*)是否存在一个半径为3的收敛圆,并说明理由.
(Ⅱ) 若点P(x,y)在映射f下的象为点Q(
| x+y |
| 2 |
| x-y |
| 2 |
答案 | |
| (Ⅰ)①设不动点的坐标为P0(x0,y0), 由题意,得
|